Subsampling and homogenization to investigate variability of composite material mechanical properties
نویسندگان
چکیده
This paper presents an innovative homogenization sampling technique applied to multiscale modelling of composite materials. The goal is to build efficiently statistical variability of mechanical properties at mesoscopic scale from the heterogeneous media analysis at microscopic scale. It is applied to the transverse elastic properties of a unidirectional Long Fibres Reinforced Composite (LFRC). A large representative part of the ply – the cell – is modelled from amicrography and studied at microscopic scale with the Finite Element Analysis (FEA) under 2D plane strain hypothesis. The study consists in estimating the effective elastic properties of subcells, subparts of the previous cell, thanks to a specifically developed numerical procedure. A unique calculation is computed on the entire ply reduced to three basic loading cases is applied to the cell. Subsamples taken into the simulation cell are homogenized at post-processing level of strain and stress fields. A standardmechanics approachwas considered. Various subsampling schemes are performed with various size and spatial distribution to generate variability functions of effective elastic properties at mesoscopic scale. A statistical inference is highlighted: the variability parameters vary with the way of sampling. Dispersion functions are finally obtained and discussed.
منابع مشابه
Modeling Bamboo as a Functionally Graded Material
Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded...
متن کاملEffective mechanical properties of EM composite conductors: an analytical and finite element modeling approach
An analytical model and numerical approach to predict the effective mechanical properties of a composite conductor consisting of metallic core and insulation layers are presented in this paper. The analytical model was developed based on a two-step homogenizations and mechanics analysis for composite unit cell. The Step 1 homogenization derives the effective properties of the out-wrapped compos...
متن کاملPrediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network
Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...
متن کاملEFFECT OF SiC ADDITION ON HYDROGEN DESORPTION PROPERTIES OF NANOCRYSTALLINE MgH2 SYNTESIZED BY MECHANICAL ALLOYING
In this study, the composite material with composition of MgH2-5 wt% SiC has been prepared by co-milling of MgH2 with SiC powder. The effect of milling time and additive on MgH2 structure, i.e. crystallite size, lattice strain, particle size and specific surface area, and also hydrogen desorption properties of obtained composite was evaluated by thermal analyzer method and compared with pure un...
متن کاملApplications of the Homogenization Method to Material Design
The homogenization method is applied to obtain the preferred mechanical characteristics of materials. Since the homogenization method takes into account the effect of microstructural configuration to characterize thermo-mechanical properties of composite materials based on the asymptotic expansion method, our design methods can reflect the micromechanical responses. Two examples of the design-o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017